Journal of Advanced Transportation (Jan 2021)
SAV Operations on a Bus Line Corridor: Travel Demand, Service Frequency, and Vehicle Size
Abstract
Before shared automated vehicles (SAVs) can be widely adopted, they are anticipated to be implemented commercially in confined regions or fixed routes where the benefits of automation can be realized. SAVs have the potential to operate in a traditional transit corridor, replacing conventional transit vehicles, and have frequent interactions with riders and other vehicles sharing the same right of way. This paper microsimulates SAVs’ operation on a 6.5-mile corridor to understand how vehicle size and attributes of such SAV-based transit affect traffic, transit riders, and system costs. The SUMO (Simulation of Urban MObility) platform is employed to model microscopic interactions among SAVs, transit passengers, and other traffic. Results show that the use of smaller, but more frequent, SAVs leads to reduced passenger waiting times but increased vehicle travel times. More frequent services of smaller SAVs do not, in general, significantly affect general traffic due to shorter dwell times. Overall, using smaller SAVs instead of the large 40-seat SAVs can reduce system costs by up to 4% while also reducing passenger waiting times, under various demand levels and passenger loading factors. However, the use of 5-seat SAVs does not always have the lowest system costs.