European Radiology Experimental (Nov 2023)
Radiofrequency ablation induces tumor cell dissemination in a mouse model of hepatocellular carcinoma
Abstract
Abstract Background We tested the hypothesis that radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) promotes tumor cell release and explored a method for reducing these effects. Methods A green fluorescent protein-transfected orthotopic HCC model was established in 99 nude mice. In vivo flow cytometry was used to monitor circulating tumor cell (CTC) dynamics. Pulmonary fluorescence imaging and pathology were performed to investigate lung metastases. First, the kinetics of CTCs during the periablation period and the survival rate of CTCs released during RFA were investigated. Next, mice were allocated to controls, sham ablation, or RFA with/without hepatic vessel blocking (ligation of the portal triads) for evaluating the postablation CTC level, lung metastases, and survival over time. Moreover, the kinetics of CTCs, lung metastases, and mice survival were evaluated for RFA with/without ethanol injection. Pathological changes in tumors and surrounding parenchyma after ethanol injection were noted. Statistical analysis included t-test, ANOVA, and Kaplan-Meier survival curves. Results CTC counts were 12.3-fold increased during RFA, and 73.7% of RFA-induced CTCs were viable. Pre-RFA hepatic vessel blocking prevented the increase of peripheral CTCs, reduced the number of lung metastases, and prolonged survival (all p ≤ 0.05). Similarly, pre-RFA ethanol injection remarkably decreased CTC release during RFA and further decreased lung metastases with extended survival (all p ≤ 0.05). Histopathology revealed thrombus formation in blood vessels after ethanol injection, which may clog tumor cell dissemination during RFA. Conclusion RFA induces viable tumor cell dissemination, and pre-RFA ethanol injection may provide a prophylactic strategy to reduce this underestimated effect. Relevance statement RFA for HCC promotes viable tumor cell release during ablation, while ethanol injection can prevent RFA induced tumor cell release. Key points • RFA induced the release of viable tumor cells during the ablation procedure in an animal model. • Hepatic vessel blocking can suppress tumor cells dissemination during RFA. • Ethanol injection can prevent RFA-induced tumor cell release, presumably because of the formation of thrombosis. Graphical Abstract
Keywords