Condensed Matter Physics (Mar 2023)

Merging of Dirac points through uniaxial modulation on an optical lattice

  • A. López ,
  • B. Montañes,
  • E. Medina

DOI
https://doi.org/10.5488/CMP.26.13503
Journal volume & issue
Vol. 26, no. 1
p. 13503

Abstract

Read online

We analyze the scenario of modulating the potential strength of bound atoms in an optical honeycomb lattice patterned by an electric field to emulate uniaxial strain. This modulation can be achieved by a combination of the strength of the patterned electric field and gauge vector effects using the Floquet approach. We show that such a modulation allows one to follow through a topological transition between a semi-metal and a band insulator, when two non-equivalent K points merge as a function of the electric field strength. We explicitly compute the wavefunctions for the moving K points and the Chern numbers up to the transition. Anisotropic effective masses and the insulating gap are described close to the semimetal-insulator transition.

Keywords