Malaria Journal (Mar 2022)

Genetic polymorphisms in genes associated with drug resistance in Plasmodium vivax parasites from northeastern Myanmar

  • Fang Huang,
  • Shigang Li,
  • Peng Tian,
  • Lahpai Ja Seng Pu,
  • Yanwen Cui,
  • Hui Liu,
  • Lianzhi Yang,
  • Dahidam Yaw Bi

DOI
https://doi.org/10.1186/s12936-022-04084-y
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Anti-malarial drug resistance is still a major threat to malaria elimination in the Great Mekong Sub-region. Plasmodium vivax parasites resistant to anti-malarial drugs are now found in Myanmar. Molecular surveillance on drug resistance genes in P. vivax parasites from northeastern Myanmar was aimed at estimating the underlying drug resistance in this region. Methods Blood samples from patients with vivax malaria were collected from Laiza city in northeastern Myanmar in 2020. Drug resistance genes including Pvcrt-o, Pvmdr1, Pvdhfr and Pvdhps were amplified and sequenced. Genetic polymorphisms and haplotypes were analysed to evaluate the prevalence of mutant alleles associated with drug resistance. Results A total of 149 blood samples from P. vivax patients were collected. The prevalence of Pvmdr1 mutations at codons 958 and 1076 was 100.0% and 52.0%, respectively, whereas no single nucleotide polymorphism was present at codon 976. The proportions of single and double mutant types were 48.0% and 52.0%, respectively. A K10 “AAG” insertion in the Pvcrt-o gene was not detected. Mutations in Pvdhfr at codons 57, 58, 61, 99 and 117 were detected in 29.9%, 54.3%, 27.6%, 44.9% and 55.1% of the samples, respectively. Wild type was predominant (46.3%), followed by quadruple and double mutant haplotypes. Of three types of tandem repeat variations of Pvdhfr, Type B, with three copies of GGDN repeats, was the most common. Pvdhps mutations were only detected at codons 383 and 553 and the wild type Pvdhps was dominant (78.0%). Eleven haplotypes were identified when combining the mutations of Pvdhfr and Pvdhps, among which the predominant one was the wild type (33.9%), followed by double mutant alleles S58R/S117N /WT (24.6%). Conclusions This study demonstrated resistant P. vivax phenotypes exists in northeastern Myanmar. Continued surveillance of drug resistance markers is needed to update treatment guidelines in this region.

Keywords