Molecules (Nov 2017)

Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144

  • Laetitia Nivelle,
  • Jane Hubert,
  • Eric Courot,
  • Nicolas Borie,
  • Jean-Hugues Renault,
  • Jean-Marc Nuzillard,
  • Dominique Harakat,
  • Christophe Clément,
  • Laurent Martiny,
  • Dominique Delmas,
  • Philippe Jeandet,
  • Michel Tarpin

DOI
https://doi.org/10.3390/molecules22111940
Journal volume & issue
Vol. 22, no. 11
p. 1940

Abstract

Read online

A new resveratrol dimer (1) called labruscol, has been purified by centrifugal partition chromatography of a crude ethyl acetate stilbene extract obtained from elicited grapevine cell suspensions of Vitis labrusca L. cultured in a 14-liter stirred bioreactor. One dimensional (1D) and two dimensional (2D) nuclear magnetic resonance (NMR) analyses including 1H, 13C, heteronuclear single-quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), and correlation spectroscopy (COSY) as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS) were used to characterize this compound and to unambiguously identify it as a new stilbene dimer, though its relative stereochemistry remained unsolved. Labruscol was recovered as a pure compound (>93%) in sufficient amounts (41 mg) to allow assessment of its biological activity (cell viability, cell invasion and apoptotic activity) on two different cell lines, including one human skin melanoma cancer cell line HT-144 and a healthy human dermal fibroblast (HDF) line. This compound induced almost 100% of cell viability inhibition in the cancer line at a dose of 100 μM within 72 h of treatment. However, at all tested concentrations and treatment times, resveratrol displayed an inhibition of the cancer line viability higher than that of labruscol in the presence of fetal bovine serum. Both compounds also showed differential activities on healthy and cancer cell lines. Finally, labruscol at a concentration of 1.2 μM was shown to reduce cell invasion by 40%, although no similar activity was observed with resveratrol. The cytotoxic activity of this newly-identified dimer is discussed.

Keywords