Plants (Sep 2022)

The Effect of Ginger and Its Sub-Components on Pain

  • Suyong Kim,
  • Chunhoo Cheon,
  • Bonglee Kim,
  • Woojin Kim

DOI
https://doi.org/10.3390/plants11172296
Journal volume & issue
Vol. 11, no. 17
p. 2296

Abstract

Read online

Zingiber officinale Roscoe (ginger) has long been used as an herbal medicine to treat various diseases, and its main sub-components, [6]-gingerol and [6]-shogaol, were also reported to have anti-inflammatory, anti-oxidant, and anti-tumor effects. However, their effects on various types of pain and their underlying mechanisms of action have not been clearly analyzed and understood yet. Thus, in this review, by analyzing 16 studies that used Z. officinale, [6]-gingerol, and [6]-shogaol on mechanical, spontaneous and thermal pain, their effects and mechanisms of action have been analyzed. Pain was induced by either nerve injury or chemical injections in rodents. Nine studies analyzed the analgesic effect of Z. officinale, and four and three studies focused on [6]-gingerol and [6]-shogaol, respectively. Seven papers have demonstrated the underlying mechanism of action of their analgesic effects. Studies have focused on the spinal cord and one on the dorsal root ganglion (DRG) neurons. Involvement and change in the function of serotonergic receptors (5-HT1A, B, D, and 5A), transient receptor potential vanilloid 1 (TRPV1), N-methyl-D-aspartate (NMDA) receptors, phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), histone deacetylase 1 (HDAC1), voltage-gated sodium channel 1.8 (Nav1.8), substance P (SP), and sciatic nerve’s morphology have been observed.

Keywords