Scientific Reports (Nov 2022)

Assessing spermatozoal small ribonucleic acids and their relationship to blastocyst development in idiopathic infertile males

  • Matthew Hamilton,
  • Stewart Russell,
  • Karen Menezes,
  • Sergey I. Moskovtsev,
  • Clifford Librach

DOI
https://doi.org/10.1038/s41598-022-24568-w
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Clinical testing strategies for diagnosing male factor infertility are limited. A deeper analysis of spermatozoa-derived factors could potentially diagnose some cases of ‘unexplained infertility’. Spermatozoa carry a rich and dynamic profile of small RNAs, which have demonstrated potential developmental importance and association with fertility status. We used next-generation sequencing to correlate sperm small RNA profiles of normozoospermic males (n = 54) with differing blastocyst development rates, when using young donor oocytes. While ribosomal RNAs accounted for the highest number of sequencing reads, transfer RNA fragments of tRNAGly/GCC and tRNAVal-CAC were the most abundant sequences across all sperm samples. A total of 324 small RNAs were differentially expressed between samples with high (n = 18) and low (n = 14) blastocyst rates (p-adj < 0.05). Ninety three miRNAs were differentially expressed between these groups (p-adj < 0.05). Differentially expressed transfer RNA fragments included: 5'-tRF-Asp-GTC; 5'-tRF-Phe-GAA; and 3'-tRF-Ser-GCA. Differentially expressed miRNAs included: let-7f-2-5p; miR-4755-3p; and miR-92a-3p. This study provides the foundation on which to validate a clinical panel of fertility-related sperm small RNAs, as well as to pursue potential mechanisms through which they alter blastocyst development.