Axioms (Jun 2012)

Foundations of Inference

  • Kevin H. Knuth,
  • John Skilling

DOI
https://doi.org/10.3390/axioms1010038
Journal volume & issue
Vol. 1, no. 1
pp. 38 – 73

Abstract

Read online

We present a simple and clear foundation for finite inference that unites and significantly extends the approaches of Kolmogorov and Cox. Our approach is based on quantifying lattices of logical statements in a way that satisfies general lattice symmetries. With other applications such as measure theory in mind, our derivations assume minimal symmetries, relying on neither negation nor continuity nor differentiability. Each relevant symmetry corresponds to an axiom of quantification, and these axioms are used to derive a unique set of quantifying rules that form the familiar probability calculus. We also derive a unique quantification of divergence, entropy and information.

Keywords