Materials (Dec 2020)

Double-Inverse-Opal-Structured Particle Assembly as a Novel Immobilized Photocatalytic Material

  • Hikaru Namigata,
  • Kanako Watanabe,
  • Saya Okubo,
  • Masashi Hasegawa,
  • Keishi Suga,
  • Daisuke Nagao

DOI
https://doi.org/10.3390/ma14010028
Journal volume & issue
Vol. 14, no. 1
p. 28

Abstract

Read online

Immobilization of photocatalysts on supports is an important method of adding highly active photocatalysts to a continuous flowing system without the need for photocatalyst recovery. However, direct immobilization prevents exposure to all photocatalytically active surfaces. Therefore, to immobilize particulate photocatalysts, while exposing the photocatalytic surface to organic pollutant water in a continuous flowing system, in this study, we employed double-inverse-opal (DIO) with periodically arranged, interconnected macropores, each containing a single photocatalytic particle. Increasing the macropore size successfully enhanced the decomposition rate of organic dye due to the high diffusion rate of dye molecules in the macropores of thin DIOs. However, an excessive increase in macropore size lowered the decomposition rate of dye molecules because an increase in DIO thickness caused the attenuation of light used to excite the photocatalytic particles. This study presents novel, immobilized photocatalytic DIO-structured particles that can be employed in continuous flowing reaction systems by tuning the photocatalytic particle size, macropore size, and DIO thickness.

Keywords