Stem Cell Reports (Feb 2019)

Region-Restrict Astrocytes Exhibit Heterogeneous Susceptibility to Neuronal Reprogramming

  • Xin Hu,
  • Shangyao Qin,
  • Xiao Huang,
  • Yimin Yuan,
  • Zijian Tan,
  • Yakun Gu,
  • Xueyan Cheng,
  • Dan Wang,
  • Xiao-Feng Lian,
  • Cheng He,
  • Zhida Su

Journal volume & issue
Vol. 12, no. 2
pp. 290 – 304

Abstract

Read online

Summary: The adult CNS has poor ability to replace degenerated neurons following injury or disease. Recently, direct reprogramming of astrocytes into induced neurons has been proposed as an innovative strategy toward CNS repair. As a cell population that shows high diversity on physiological properties and functions depending on their spatiotemporal distribution, however, whether the astrocyte heterogeneity affect neuronal reprogramming is not clear. Here, we show that astrocytes derived from cortex, cerebellum, and spinal cord exhibit biological heterogeneity and possess distinct susceptibility to transcription factor-induced neuronal reprogramming. The heterogeneous expression level of NOTCH1 signaling in the different CNS regions-derived astrocytes is shown to be responsible for the neuronal reprogramming diversity. Taken together, our findings demonstrate that region-restricted astrocytes reveal different intrinsic limitation of the response to neuronal reprogramming. : Su and colleagues show that astrocytes derived from cortex, cerebellum, and spinal cord exhibit biological heterogeneity and possess distinct susceptibility to transcription factor-induced neuronal reprogramming. The heterogeneous expression level of Notch1 signaling in the different CNS regions-derived astrocytes is shown to be responsible for the neuronal reprogramming diversity. Keywords: astrocytes, heterogeneity, neurons, ASCL1, NGN2, reprogramming