Cerâmica (Dec 2023)

Phase transformations and properties evolution of Ca(OH)2 containing geopolymers as a function of temperature

  • B. P. Bezerra,
  • H. R. M. Silva,
  • M. R. Morelli,
  • A. P. Luz

DOI
https://doi.org/10.1590/0366-69132023693913475
Journal volume & issue
Vol. 69, no. 391
pp. 189 – 194

Abstract

Read online

Abstract The composition-processing-structure-properties relationship of Na2O-Al2O3-SiO2-based geopolymers containing calcium sources is critical for the design of enhanced ceramic binders. This work evaluated the addition of 1-6 wt% of calcium hydroxide (CH) to a metakaolin-based geopolymer (prepared with NaOH 12 M and colloidal silica suspension) and how it affected the performance of the prepared samples after thermal treatments up to 1000 °C. The setting time, mechanical strength, porosity, density, permanent linear change, and phase and bond type evolution of the specimens with temperature were analyzed. The incorporation of 3 or 6 wt% of CH into the designed composition led to a fast hardening of the mixtures (1.7 h), resulting in geopolymers with high green mechanical strength (18.9 to 23.9 MPa). Nepheline and albite generation in the samples containing 6 wt% of CH resulted in a ceramic with improved cold crushing strength (45.2 MPa) and lower linear shrinkage (-10.5%) when compared to the calcium-free composition.

Keywords