Scientific Reports (May 2024)
Transcriptome profiling and characterization of peritoneal metastasis ovarian cancer xenografts in humanized mice
Abstract
Abstract Although immunotherapy has not yet been as successful in ovarian cancer (OC), it remains a potential therapeutic strategy. Preclinical models of OC are necessary to evaluate the efficacy of immuno-oncology (IO) drugs targeting human immune components but have been underutilized. Developing mouse models with a humanized (Hu) immune system can help understand the human immune response to IO drugs which have demonstrated limited effectiveness in OC patients. We established OC xenograft Hu-mouse models by intraperitoneally injecting luciferase-expressing SKOV-3 Luc and OVCAR-3 Luc OC cells into CD34+ Hu-mice. Tumor growth was monitored through bioluminescence imaging (BLI). In the SKOV-3 Luc Hu-mouse model, we assessed the efficacy of PD-1 blockade with pembrolizumab. We observed the presence of human lymphocyte and myeloid cell subsets within the tumors, lymph nodes, blood, and spleens in these models. Notably, these tumors exhibited a high prevalence of tumor-infiltrating macrophages. Furthermore, we identified HDAC class I target genes, and genes associated with epithelial-mesenchymal transition (EMT) and fibroblasts in the tumors of Hu-mice treated with pembrolizumab. Our xenograft Hu-mouse model of OC provides a valuable tool for investigating the efficacy of IO drugs. The insights gained from this model offer useful information to explore potential mechanisms associated with unresponsive anti-PD-1 treatment in OC.