Photonics (Nov 2021)

Experimental Demonstration of Fine-Grained Steering Inequality of Two-Qubit Mixed States

  • Zhi-Hao Bian,
  • Cong-Yue Yin

DOI
https://doi.org/10.3390/photonics8110514
Journal volume & issue
Vol. 8, no. 11
p. 514

Abstract

Read online

Quantum steering, as a cornerstone of quantum information, is usually used to witness the quantum correlation of bipartite and multi-partite states. Here, we experimentally demonstrate the quantum steering inequality of two-qubit mixed states based on the fine-grained uncertainty relation. Our experimental results show that the steering inequality has potent sensitivity to Werner states and Bell diagonal states. The steering strategy exhibits a strong ability to identify that Werner states are steerable when the decoherence coefficient a>12. Compared to the steering inequality obtained by another stratagem, the steering witness criteria of mixed states based on the fine-grained uncertainty relation demonstrated in our experiment has better precision and accuracy. Moreover, the detection efficiency in our measurement setup is only required to be 50% to close the detection loophole, which means our approach needs less detector efficiency to certificate the steerability of mixed states.

Keywords