Water (Jun 2022)

Mapping the Complex Journey of Swimming Pool Contaminants: A Multi-Method Systems Approach

  • Simone Heilgeist,
  • Oz Sahin,
  • Ryo Sekine,
  • Rodney A. Stewart

DOI
https://doi.org/10.3390/w14132062
Journal volume & issue
Vol. 14, no. 13
p. 2062

Abstract

Read online

Swimming pool owners worldwide face the challenging task of keeping their pool water balanced and free from contaminants. However, swimming pool water (SPW) quality management is complex with the countless processes and interactions of interlinked system variables. For example, contamination with sunscreen residues is inevitable as users apply sunscreen to protect their skin from damaging ultraviolet (UV) radiation. Nanoparticulate titanium dioxide (nano-TiO2) is one such residues that have received criticism due to potential human health and environmental risks. Despite ongoing research studies, management strategies of nano-TiO2 in swimming pools are still limited. Therefore, this paper focuses on developing a multi-method approach for identifying and understanding interdependencies between TiO2 particles and an aquatic environment such as a swimming pool. Given the complexity of the system to be assessed, the authors utilise a systems approach by integrating cross-matrix multiplication (MICMAC) and Systems Thinking techniques. The developed conceptual model visually depicts the complex system, which provides users with a basic understanding of swimming pool chemistry, displaying the numerous cause-and-effect relationships and enabling users to identify leverage points that can effectively change the dynamics of the system. Such systems-level understanding, and actions will help to manage nano-TiO2 levels in an efficient manner. The novelty of this paper is the proposed methodology, which uses a systems approach to conceptualise the complex interactions of contaminants in swimming pools and important pathways to elevated contaminant levels.

Keywords