Soil Systems (Jun 2024)
Liquid Nanoclay: Synthesis and Applications to Transform an Arid Desert into Fertile Land
Abstract
Nanoclay, a processed clay, is utilized in numerous high-performance cement nanocomposites. This clay consists of minerals such as kaolinite, illite, chlorite, and smectite, which are the primary components of raw clay materials formed in the presence of water. In addition to silica, alumina, and water, it also contains various concentrations of inorganic ions like Mg2+, Na+, and Ca2+. These are categorized as hydrous phyllosilicates and can be located either in interlayer spaces or on the planetary surface. Clay minerals are distinguished by their two-dimensional sheets and tetrahedral (SiO4) and octahedral (Al2O3) crystal structures. Different clay minerals are classified based on the presence of tetrahedral and octahedral layers in their structure. These include kaolinite, which has a 1:1 ratio of tetrahedral to octahedral layers, the smectite group of clay minerals and chlorite with a 2:1 ratio. Clay minerals are unique due to their small size, distinct crystal structure, and properties such as high cation exchange capacity, adsorption capacity, specific surface area, and swelling behavior. These characteristics are discussed in this review. The use of nanoclays as nanocarriers for fertilizers boasts a diverse array of materials available in both anionic and cationic variations. Layered double hydroxides (LDH) possess a distinctive capacity for exchanging anions, making them suitable for facilitating the transport of borate, phosphate, and nitrate ions. Liquid nanoclays are used extensively in agriculture, specifically as fertilizers, insecticides, herbicides, and nutrients. These novel nanomaterials have numerous benefits, including improved nutrient use, controlled nutrient release, targeted nutrient delivery, and increased agricultural productivity. Arid regions face distinct challenges like limited water availability, poor soil quality, and reduced productivity. The addition of liquid nanoclay to sandy soil offers a range of benefits that contribute to improved soil quality and environmental sustainability. Liquid nanoclay is being proposed for water management in arid regions, which will necessitate a detailed examination of soil, water availability, and hydrological conditions. Small-scale trial initiatives, engagement with local governments, and regular monitoring are required to fully comprehend its benefits and drawbacks. These developments would increase the practicality and effectiveness of using liquid nanoclay in desert agriculture.
Keywords