ARL8B mediates lipid droplet contact and delivery to lysosomes for lipid remobilization
Dilip Menon,
Apoorva Bhapkar,
Bhoomika Manchandia,
Gitanjali Charak,
Surabhi Rathore,
Rakesh Mohan Jha,
Arpita Nahak,
Moumita Mondal,
Mohyeddine Omrane,
Akash Kumar Bhaskar,
Lipi Thukral,
Abdou Rachid Thiam,
Sheetal Gandotra
Affiliations
Dilip Menon
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Apoorva Bhapkar
Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
Bhoomika Manchandia
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
Gitanjali Charak
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
Surabhi Rathore
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Rakesh Mohan Jha
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Arpita Nahak
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Moumita Mondal
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Mohyeddine Omrane
Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
Akash Kumar Bhaskar
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Lipi Thukral
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Abdou Rachid Thiam
Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Corresponding author
Sheetal Gandotra
CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Corresponding author
Summary: Lipid droplets (LDs) play a crucial role in maintaining cellular lipid balance by storing and delivering lipids as needed. However, the intricate lipolytic pathways involved in LD turnover remain poorly described, hindering our comprehension of lipid catabolism and related disorders. Here, we show a function of the small GTPase ARL8B in mediating LD turnover in lysosomes. ARL8B-GDP localizes to LDs, while ARL8-GTP predominantly favors lysosomes. GDP binding induces a conformation with an exposed N-terminal amphipathic helix, enabling ARL8B to bind to LDs. By associating with LDs and lysosomes, and with its property to form a heterotypic complex, ARL8B mediates LD-lysosome contacts and efficient lipid transfer between these organelles. In human macrophages, this ARL8B-dependent LD turnover mechanism appears as the major lipolytic pathway. Our finding opens exciting possibilities for understanding the molecular mechanisms underlying LD degradation and its potential implications for inflammatory disorders.