PLoS ONE (Jan 2018)

Empirical estimation of life expectancy from a linked health database of adults who entered care for HIV.

  • Dena Schanzer,
  • Tony Antoniou,
  • Jeffrey Kwong,
  • Karen Timmerman,
  • Ping Yan

DOI
https://doi.org/10.1371/journal.pone.0195031
Journal volume & issue
Vol. 13, no. 4
p. e0195031

Abstract

Read online

While combination antiretroviral therapy (cART) has significantly improved survival times for persons diagnosed with HIV, estimation of life expectancy (LE) for this cohort remains a challenge, as mortality rates are a function of both time since diagnosis and age, and mortality rates for the oldest age groups may not be available.A validated case-finding algorithm for HIV was used to update the cohort of HIV-positive adults who had entered care in Ontario, Canada as of 2012. The Chiang II abridged life table algorithm was modified to use mortality rates stratified by time since entering the cohort and to include various methods for extrapolation of the excess HIV mortality rates to older age groups.As of 2012, there were approximately 15,000 adults in care for HIV in Ontario. The crude all-cause mortality rate declined from 2.6% (95%CI 2.3, 2.9) per year in 2000 to 1.3% (1.2, 1.5) in 2012. Mortality rates were elevated for the first year of care compared to subsequent years (rate ratio of 2.6 (95% CI 2.3, 3.1)). LE for a 20-year old living in Ontario was 62 years (expected age at death is 82), while LE for a 20-year old with HIV was estimated to be reduced to 47 years, for a loss of 15 years of life. Ignoring the higher mortality rates among new cases introduced a modest bias of 1.5 additional years of life lost. In comparison, using 55+ as the open-ended age group was a major source of bias, adding 11 years to the calculated LE.Use of age limits less than the expected age at death for the open-ended age group significantly overstates the estimated LE and is not recommended. The Chiang II method easily accommodated input of stratified mortality rates and extrapolation of excess mortality rates.