Scientific Reports (Jul 2022)

Net greenhouse gas balance with cover crops in semi-arid irrigated cropping systems

  • Pramod Acharya,
  • Rajan Ghimire,
  • Wooiklee S. Paye,
  • Amy C. Ganguli,
  • Stephen J. DelGrosso

DOI
https://doi.org/10.1038/s41598-022-16719-w
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Climate smart agriculture has been emphasized for mitigating anthropogenic greenhouse gas (GHG) emissions, yet the mitigation potential of individual management practices remain largely unexplored in semi-arid cropping systems. This study evaluated the effects of different winter cover crop mixtures on CO2 and N2O emissions, net GHG balance (GHGnet), greenhouse gas intensity (GHGI), yield-scaled GHG emissions, and soil properties in irrigated forage corn (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) rotations. Four cover crop treatments: (1) grasses, brassicas, and legumes mixture (GBL), (2) grasses and brassicas mixture (GB), (3) grasses and legumes mixture (GL), and (4) a no-cover crop (NCC) control, each replicated four times under corn and sorghum phase of the rotations, were tested in the semi-arid Southern Great Plains of USA. Results showed 5–10 times higher soil respiration with cover crop mixtures than NCC during the cover crop phase and no difference during the cash crop phase. The average N2O-N emission in NCC was 44% lower than GL and 77% lower than GBL in corn and sorghum rotations. Cash crop yield was 13–30% greater in cover crop treatments than NCC, but treatment effects were not observed for GHGnet, yield-scaled emissions, and GHGI. Integrating cover crops could be a climate smart strategy for forage production in irrigated semi-arid agroecosystems.