Journal of Experimental & Clinical Cancer Research (May 2024)
Mitochondrial transfer in tunneling nanotubes—a new target for cancer therapy
Abstract
Abstract A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy. Graphical Abstract Mitochondrial Transfer in the Tumor Microenvironment. This review elaborates in detail on the molecular mechanisms and pathophysiological significance behind the mitochondrial transfer occurring between tumor cells and their microenvironment. This biological phenomenon of mitochondrial transfer is prevalent in a variety of cancers, including both solid tumors and hematologic malignancies, with a high incidence in acute myeloid leukemia (AML), breast cancer, and gliomas. The review also discusses therapeutic approaches targeting mitochondrial transfer, with a special focus on its application in immunotherapy, particularly in CAR-T cell therapy, where it has begun to show unique advantages
Keywords