Dentistry Journal (Oct 2018)

Twist1 Suppresses Cementoblast Differentiation

  • Jung-Sun Moon,
  • Seong-Duk Kim,
  • Hyun-Mi Ko,
  • Young-Jun Kim,
  • Sun-Hun Kim,
  • Min-Seok Kim

DOI
https://doi.org/10.3390/dj6040057
Journal volume & issue
Vol. 6, no. 4
p. 57

Abstract

Read online

The transcription factor Twist1 is known to be closely associated with the formation of bone by mesenchymal stem cells and osteoblasts; however, the role of Twist1 in cementogenesis has not yet been determined. This study was undertaken to elucidate the roles of Twist1 in cementoblast differentiation by means of the gain- or loss-of-function method. We used alkaline phosphatase (ALP) and alizarin red S staining and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) to determine whether the forced transient expression or knock-down of Twist1 in a mouse cementoblast cell line, OCCM-30, could affect cementogenic differentiation. Silencing Twist1 with small interference RNA (siRNA) enhanced the formation of mineralized tissue. The expression of several cementogenesis markers, such as bone sialoprotein (BSP), osteopontin (OPN), dentin matrix protein1 (DMP1), and dentin sialophosphoprotein (DSPP) mRNA, were upregulated. Transient Twist1 overexpression in OCCM-30 consistently suppressed mineralization capacity and downregulated the differentiation markers. These results suggest that the Twist1 transcription factor may play a role in regulating cementoblast differentiation.

Keywords