Haematologica (Dec 2023)

TLR3 agonism augments CD47 inhibition in acute myeloid leukemia

  • Haley E. Ramsey,
  • Agnieszka E. Gorska,
  • Brianna N. Smith,
  • Andrew J. Monteith,
  • Londa Fuller,
  • Maria P. Arrate,
  • Michael R. Savona

DOI
https://doi.org/10.3324/haematol.2023.283850
Journal volume & issue
Vol. 999, no. 1

Abstract

Read online

CD47-SIRPa is a myeloid check point pathway that inhibits phagocytosis of cells lacking markers for self-recognition. Tumor cells can overexpress CD47 and bind to SIRPa on macrophages, preventing phagocytosis. CD47 expression is enhanced and correlated with a negative prognosis in Acute Myeloid Leukemia (AML), with its blockade leading to cell clearance. ALX90 is an engineered fusion protein with high-affinity for CD47. Composed of the N-terminal D1 domain of SIRPα genetically linked to an inactive Fc domain from human IgG, ALX90 is designed to avoid potential toxicity of CD47-expressing red blood cells. Venetoclax (VEN) is a specific B-cell lymphoma-2 (BCL-2) inhibitor that can restore apoptosis in malignant cells. In AML VEN is combined with azanucleosides to induce superior remission rates, however treatment for refractory/relapse is an unmet need. We questioned whether the anti-tumor activity of a VEN based regimen can be augmented through CD47 inhibition (CD47i) in AML. Human AML cell lines were sensitive to ALX90 and its addition increased efficacy of a VEN+AZA regimen in vivo. However, CD47i failed to clear bone marrow tumor burden in PDX models. We hypothesized that in cases of high medullary tumor burden, loss of resident macrophages reduced ALX efficiency. Therefore, we attempted to enhance this medullary macrophage population with agonism of TLR3 via Poly(I:C), which led to expansion and activation of medullary macrophages in in vivo AML PDX models and potentiated CD47i. In summary, the addition of Poly(I:C) can enhance medullary macrophage populations to potentiate the phagocytosis merited by therapeutic inhibition of CD47.