Instruments (Oct 2023)

Microwave Photon Emission in Superconducting Circuits

  • Alessandro D′Elia,
  • Alessio Rettaroli,
  • Fabio Chiarello,
  • Daniele Di Gioacchino,
  • Emanuele Enrico,
  • Luca Fasolo,
  • Carlo Ligi,
  • Giovanni Maccarrone,
  • Federica Mantegazzini,
  • Benno Margesin,
  • Francesco Mattioli,
  • Simone Tocci,
  • Andrea Vinante,
  • Claudio Gatti

DOI
https://doi.org/10.3390/instruments7040036
Journal volume & issue
Vol. 7, no. 4
p. 36

Abstract

Read online

Quantum computing requires a novel approach to store data as quantum states, opposite to classical bits. One of the most promising candidates is entangled photons. In this manuscript, we show the photon emission in the range of microwave frequencies of three different types of superconducting circuits, a SQUID, a JPA, and a JTWPA, often used as low-noise parametric amplifiers. These devices can be operated as sources of entangled photons. We report the experimental protocol used to produce and measure microwave radiation from these circuits, as well as data simulations. The collected spectra are obtained by performing single-tone measurements with a direct rf pump on the devices; the output spectra at low powers (below −100 dBm) are well interpreted by the dynamical Casimir model, while at high powers (above −100 dBm) the system is well described by the Autler–Townes fluorescence of a three-level atom.

Keywords