Resilient Cities and Structures (Sep 2024)

A digital twin framework for efficient electric power restoration and resilient recovery in the aftermath of hurricanes considering the interdependencies with road network and essential facilities

  • Abdullah M. Braik,
  • Maria Koliou

Journal volume & issue
Vol. 3, no. 3
pp. 79 – 91

Abstract

Read online

The community's resilience in the face of natural hazards relies heavily on the rapid and efficient restoration of electric power networks, which plays a critical role in emergency response, economic recovery, and the functionality of essential lifeline and social infrastructure systems. Leveraging the recent data revolution, the digital twin (DT) concept emerges as a promising tool to enhance the effectiveness of post-disaster recovery efforts. This paper introduces a novel framework for post-hurricane electric power restoration using a hybrid DT approach that combines physics-based and data-driven models by utilizing a dynamic Bayesian network. By capturing the complexities of power system dynamics and incorporating the road network's influence, the framework offers a comprehensive methodology to guide real-time power restoration efforts in post-disaster scenarios. A discrete event simulation is conducted to demonstrate the proposed framework's efficacy. The study showcases how the electric power restoration DT can be monitored and updated in real-time, reflecting changing conditions and facilitating adaptive decision-making. Furthermore, it demonstrates the framework's flexibility to allow decision-makers to prioritize essential, residential, and business facilities and compare different restoration plans and their potential effect on the community.

Keywords