Fractal and Fractional (Oct 2021)
Abstract Fractional Monotone Approximation with Applications
Abstract
Here we extended our earlier fractional monotone approximation theory to abstract fractional monotone approximation, with applications to Prabhakar fractional calculus and non-singular kernel fractional calculi. We cover both the left and right sides of this constrained approximation. Let f∈Cp−1,1, p≥0 and let L be a linear abstract left or right fractional differential operator such that Lf≥0 over 0,1 or −1,0, respectively. We can find a sequence of polynomials Qn of degree ≤n such that LQn≥0 over 0,1 or −1,0, respectively. Additionally f is approximated quantitatively with rates uniformly by Qn with the use of first modulus of continuity of fp.
Keywords