Кібербезпека: освіта, наука, техніка (Mar 2023)
НАВЧАННЯ ШТУЧНОЇ НЕЙРОННОЇ МЕРЕЖІ НА ОСНОВІ ДАНИХ ОЦІНЮВАННЯ РЕЗУЛЬТАТИВНОСТІ ТА РИЗИКІВ ІНВЕСТУВАННЯ В ЦИФРОВІ АКТИВИ
Abstract
У даній публікації досліджується проблема аналізу результатів навчання штучних нейронних мереж на основі даних про ефективність та ризики інвестування в цифрові активи, зокрема, в умовах керування процесом купівлі та продажу криптовалют. Підхід до розв'язання цієї задачі базується на застосуванні теорії ігор як основного принципу для формування архітектури штучної нейронної мережі. Сполучення двох фундаментальних теорій - теорії ігор та нейромереж - дозволяє створювати інтуїтивно зрозумілі і ефективні інтелектуальні інформаційні системи для підтримки прийняття рішень у різних прикладних сферах, таких як фінанси, економіка та управління ресурсами. Особливу увагу приділено врахуванню нечітких параметрів та невизначеності в умовах ринку, що відображає реальні обставини при інвестуванні в криптовалюти та інші цифрові активи. Стаття пропонує ряд методів навчання та адаптації штучної нейронної мережі в рамках розробленого підходу, а також рекомендації щодо оцінки її ефективності та стабільності. Проаналізовано можливі області застосування та перспективи подальшого розвитку даної методології у контексті ринку цифрових активів. Проілюстровано застосування розробленої методології для аналізу результатів навчанштучної нейронної мережі та підтвердженно її високу ефективність у прогнозуванні результативності та ризиків інвестування в цифрові активи. Висвітлено проблеми та обмеження, які можуть виникнути під час використання даної методології, а також запропоновано можливі шляхи їх подолання та удосконалення.
Keywords