Energies (Jan 2018)

A Generic Approach to Analyze the Impact of a Future Aircraft Design on the Boarding Process

  • Bekir Yildiz,
  • Peter Förster,
  • Thomas Feuerle,
  • Peter Hecker,
  • Stefan Bugow,
  • Stefan Helber

DOI
https://doi.org/10.3390/en11020303
Journal volume & issue
Vol. 11, no. 2
p. 303

Abstract

Read online

The turnaround process constitutes an important part of the air transportation system. Airports often represent bottlenecks in air traffic management (ATM), thus operations related to the preparation of the aircraft for the next flight leg have to be executed smoothly and in a timely manner. The ATM significantly depends on a reliable turnaround process. Future paradigm changes with respect to airplane energy sources, aircraft design or propulsion concepts will also influence the airport layout. As a consequence, operational processes associated with the turnaround will be affected. Airlines aim for efficient and timely turnaround operations that are correlated with higher profits. This case study discusses an approach to investigate a new aircraft design with respect to the implications on the turnaround. The boarding process, as part of the turnaround, serves as an example to evaluate the consequences of new design concepts. This study is part of an interdisciplinary research to investigate future energy, propulsion and designs concepts and their implications on the whole ATM system. Due to these new concepts, several processes of the turnaround will be affected. For example, new energy storage concepts will influence the fueling process on the aircraft itself or might lead to a new infrastructure at the airport. This paper aims to evaluate the applied methodology in the case of a new boarding process, due to a new aircraft design, by means of a generic example. An agent-based boarding simulation is applied to assess passenger behavior during boarding, particularly with regard to cabin layout and seat configuration. The results of the generic boarding simulation are integrated into a simplified, deterministic and generic simulation of the turnaround process. This was done to assess the proposed framework for future investigations which on the one hand address the ATM system holistically and on the other, incorporate additional or adapted processes of the turnaround.

Keywords