Poultry Science (Feb 2020)
Investigation of the impact of gut microbiotas on fertility of stored sperm by types of hens
Abstract
Owing to the practical interest in understanding duration of fertility (DF) to reduce the cost of producing hatching eggs by decreasing the frequency of artificial insemination, as well to uncover the mechanism of the estrogen-gut microbiome axis, elucidating the interaction between the maternal microbiome and the function of sperm storage tubules (SST) has become important for revealing the DF in laying hens. In this study, we investigated the compositional, structural, and functional differences in gut microbiomes between hens with high (HSST, n = 8) and low SST activity (LSST, n = 10) by performing phenotypic selection from approximately 400 individual hens based on their DFs. Their cecal microbial communities were analyzed by sequencing the V4 region of the 16S rRNA gene. The microbiome abundance estimators from the ceca of HSST and LSST hens were not significantly different at the phylum and genus taxonomic levels, although the relative abundances for the phylum Firmicutes and the genus Lactobacillus were higher in the HSST group. Furthermore, some taxonomic levels of bacteria expressing the components of several metabolic pathways differed between the HSST and LSST groups. Moreover, predicting functional microbiomes by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that certain pathways, such as the metabolism of carbohydrates and protein, cellular processes, and organismal systems, of the HSST group exhibited higher expression of genes associated with bioactivity and energy biosynthesis than those in the LSST group. Our results may provide insights into hen-microbe interactions with respect to DF and will be useful in establishing a strategy for new research to uncover the functional regulation of SST in laying hens.