BioResources (Apr 2015)

Hot-Air/Hot-Steam Process for the Production of Laccase-Mediator-System Bound Wood Fiber Insulation Boards

  • Markus Euring,
  • Alexander Kirsch,
  • Alireza Kharazipour

DOI
https://doi.org/10.15376/biores.10.2.3541-3552
Journal volume & issue
Vol. 10, no. 2
pp. 3541 – 3552

Abstract

Read online

In this study, a new technical process for hardening wood fiber insulation boards is introduced. During the dry-process, the fibers are usually glued with polymeric-diphenylmethane-diisocyanate (pMDI) and hardened to wood fiber insulation boards using a steam-air mixture. However, the maximum temperature reached in the steam-air process was 100 °C, and it was impossible to use an alternative binding agent for the gluing of the wood fiber insulation boards other than pMDI. When incubated with laccase-mediator-system (LMS) as a naturally based bonding system, temperatures of over 120 °C are required because of the chemical wood composition, especially the lignin. In this case, the hot-air/hot-steam process offers new technical opportunities for realizing temperatures above 100 °C. In this study, wood fiber insulation boards were glued with LMS, vs. reference boards with inactivated LMS, laccase alone, and 4% pMDI. Then, the boards were hardened using one of three processes: with steam-air mixture, with hot-air, and with hot-air/hot-steam. Through the hot-air/hot-steam process, temperatures of well over 120 °C were attainable. All the insulation boards hardened using the hot-air/hot-steam process showed better physical and technical properties than those hardened with steam-air mixture or hot-air alone. The reason for this is a sudden increase of temperature after the adding of steam because high temperatures insure that the LMS activated wood fiber surface lignins are completely plasticized. As a result the physical-technological properties such as internal bond strength, compression strength, and short term water absorption of insulation boards treated with LMS were comparable to those boards treated with 4% pMDI.

Keywords