BMC Evolutionary Biology (Feb 2007)

Rapid evolution in response to introduced predators II: the contribution of adaptive plasticity

  • Knapp Roland A,
  • Bakelar Jeremy W,
  • Latta Leigh C,
  • Pfrender Michael E

DOI
https://doi.org/10.1186/1471-2148-7-21
Journal volume & issue
Vol. 7, no. 1
p. 21

Abstract

Read online

Abstract Background Introductions of non-native species can significantly alter the selective environment for populations of native species, which can respond through phenotypic plasticity or genetic adaptation. We examined phenotypic and genetic responses of Daphnia populations to recent introductions of non-native fish to assess the relative roles of phenotypic plasticity versus genetic change in causing the observed patterns. The Daphnia community in alpine lakes throughout the Sierra Nevada of California (USA) is ideally suited for investigation of rapid adaptive evolution because there are multiple lakes with and without introduced fish predators. We conducted common-garden experiments involving presence or absence of chemical cues produced by fish and measured morphological and life-history traits in Daphnia melanica populations collected from lakes with contrasting fish stocking histories. The experiment allowed us to assess the degree of population differentiation due to fish predation and examine the contribution of adaptive plasticity in the response to predator introduction. Results Our results show reductions in egg number and body size of D. melanica in response to introduced fish. These phenotypic changes have a genetic basis but are partly due to a direct response to chemical cues from fish via adaptive phenotypic plasticity. Body size showed the largest phenotypic change, on the order of nine phenotypic standard deviations, with approximately 11% of the change explained by adaptive plasticity. Both evolutionary and plastic changes in body size and egg number occurred but no changes in the timing of reproduction were observed. Conclusion Native Daphnia populations exposed to chemical cues produced by salmonid fish predators display adaptive plasticity for body size and fecundity. The magnitude of adaptive plasticity was insufficient to explain the total phenotypic change, so the realized change in phenotypic means in populations exposed to introduced fish may be the result of a combination of initial plasticity and subsequent genetic adaptation. Our results suggest that immediately following the introduction of fish predators, adaptive plasticity may reduce the impact of selection through "Baldwin/Bogert effects" by facilitating the movement of populations toward new fitness optima. Our study of the response of a native species to an introduced predator enhances our understanding of the conditions necessary for rapid adaptive evolution and the relationship between rapid evolution and adaptive phenotypic plasticity.