Atmospheric Chemistry and Physics (Apr 2020)
Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke
- B. A. Holanda,
- B. A. Holanda,
- B. A. Holanda,
- M. L. Pöhlker,
- D. Walter,
- D. Walter,
- J. Saturno,
- J. Saturno,
- M. Sörgel,
- M. Sörgel,
- J. Ditas,
- J. Ditas,
- F. Ditas,
- F. Ditas,
- F. Ditas,
- C. Schulz,
- C. Schulz,
- M. A. Franco,
- M. A. Franco,
- Q. Wang,
- Q. Wang,
- T. Donth,
- P. Artaxo,
- H. M. J. Barbosa,
- S. Borrmann,
- S. Borrmann,
- R. Braga,
- J. Brito,
- J. Brito,
- Y. Cheng,
- M. Dollner,
- M. Dollner,
- J. W. Kaiser,
- J. W. Kaiser,
- T. Klimach,
- C. Knote,
- O. O. Krüger,
- D. Fütterer,
- J. V. Lavrič,
- N. Ma,
- N. Ma,
- L. A. T. Machado,
- L. A. T. Machado,
- J. Ming,
- J. Ming,
- F. G. Morais,
- H. Paulsen,
- D. Sauer,
- H. Schlager,
- J. Schneider,
- H. Su,
- B. Weinzierl,
- B. Weinzierl,
- A. Walser,
- A. Walser,
- A. Walser,
- M. Wendisch,
- H. Ziereis,
- M. Zöger,
- U. Pöschl,
- M. O. Andreae,
- M. O. Andreae,
- C. Pöhlker,
- C. Pöhlker
Affiliations
- B. A. Holanda
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- B. A. Holanda
- Biogeochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- B. A. Holanda
- Instituto de Fisica, Universidade de Sao Paulo, 05508-090, Sao Paulo, SP, Brazil
- M. L. Pöhlker
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- D. Walter
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- D. Walter
- Max Planck Institute for Biogeochemistry, 07701 Jena, Germany
- J. Saturno
- Biogeochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- J. Saturno
- now at: Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
- M. Sörgel
- Biogeochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- M. Sörgel
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- J. Ditas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- J. Ditas
- Institute for Environmental and Climate Research (ECI), Jinan University, Guangzhou, 511443, China
- F. Ditas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- F. Ditas
- Biogeochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- F. Ditas
- now at: Hessisches Landesamt für Naturschutz, Umwelt und Geologie, 65203 Wiesbaden, Germany
- C. Schulz
- Experimental Aerosol and Cloud Microphysics Department, TROPOS, Leibniz-Institute for Tropospheric Research, Leipzig, Germany
- C. Schulz
- Particle Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- M. A. Franco
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- M. A. Franco
- Instituto de Fisica, Universidade de Sao Paulo, 05508-090, Sao Paulo, SP, Brazil
- Q. Wang
- Biogeochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Q. Wang
- Institute for Environmental and Climate Research (ECI), Jinan University, Guangzhou, 511443, China
- T. Donth
- Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
- P. Artaxo
- Instituto de Fisica, Universidade de Sao Paulo, 05508-090, Sao Paulo, SP, Brazil
- H. M. J. Barbosa
- Instituto de Fisica, Universidade de Sao Paulo, 05508-090, Sao Paulo, SP, Brazil
- S. Borrmann
- Particle Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- S. Borrmann
- Institute for Physics of the Atmosphere, Johannes Gutenberg University, 55128 Mainz, Germany
- R. Braga
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- J. Brito
- Instituto de Fisica, Universidade de Sao Paulo, 05508-090, Sao Paulo, SP, Brazil
- J. Brito
- now at: IMT Lille Douai, Univ. Lille, SAGE, 59000 Lille, France
- Y. Cheng
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- M. Dollner
- University of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, 1090 Vienna, Austria
- M. Dollner
- Institute for Atmospheric Physics, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
- J. W. Kaiser
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- J. W. Kaiser
- now at: Deutscher Wetterdienst, 63067 Offenbach, Germany
- T. Klimach
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- C. Knote
- Meteorological Institute, Ludwig-Maximilians-Universität, Munich, Germany
- O. O. Krüger
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- D. Fütterer
- Institute for Atmospheric Physics, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
- J. V. Lavrič
- Max Planck Institute for Biogeochemistry, 07701 Jena, Germany
- N. Ma
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- N. Ma
- Institute for Environmental and Climate Research (ECI), Jinan University, Guangzhou, 511443, China
- L. A. T. Machado
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- L. A. T. Machado
- National Institute for Space Research (INPE), São José Dos Campos, Brazil
- J. Ming
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- J. Ming
- Biogeochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- F. G. Morais
- Instituto de Fisica, Universidade de Sao Paulo, 05508-090, Sao Paulo, SP, Brazil
- H. Paulsen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- D. Sauer
- Institute for Atmospheric Physics, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
- H. Schlager
- Institute for Atmospheric Physics, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
- J. Schneider
- Particle Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- H. Su
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- B. Weinzierl
- University of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, 1090 Vienna, Austria
- B. Weinzierl
- Institute for Atmospheric Physics, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
- A. Walser
- University of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, 1090 Vienna, Austria
- A. Walser
- Institute for Atmospheric Physics, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
- A. Walser
- Meteorological Institute, Ludwig-Maximilians-Universität, Munich, Germany
- M. Wendisch
- Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
- H. Ziereis
- Institute for Atmospheric Physics, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
- M. Zöger
- Flight experiments, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
- U. Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- M. O. Andreae
- Biogeochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- M. O. Andreae
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
- C. Pöhlker
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- C. Pöhlker
- Biogeochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- DOI
- https://doi.org/10.5194/acp-20-4757-2020
- Journal volume & issue
-
Vol. 20
pp. 4757 – 4785
Abstract
Black carbon (BC) aerosols influence the Earth's atmosphere and climate, but their microphysical properties, spatiotemporal distribution, and long-range transport are not well constrained. This study presents airborne observations of the transatlantic transport of BC-rich African biomass burning (BB) smoke into the Amazon Basin using a Single Particle Soot Photometer (SP2) as well as several complementary techniques. We base our results on observations of aerosols and trace gases off the Brazilian coast onboard the HALO (High Altitude and LOng range) research aircraft during the ACRIDICON-CHUVA campaign in September 2014. During flight AC19 over land and ocean at the northeastern coastline of the Amazon Basin, we observed a BC-rich layer at ∼3.5 km altitude with a vertical extension of ∼0.3 km. Backward trajectories suggest that fires in African grasslands, savannas, and shrublands were the main source of this pollution layer and that the observed BB smoke had undergone more than 10 d of atmospheric transport and aging over the South Atlantic before reaching the Amazon Basin. The aged smoke is characterized by a dominant accumulation mode, centered at about 130 nm, with a particle concentration of Nacc=850±330 cm−3. The rBC particles account for ∼15 % of the submicrometer aerosol mass and ∼40 % of the total aerosol number concentration. This corresponds to a mass concentration range from 0.5 to 2 µg m−3 (1st to 99th percentiles) and a number concentration range from 90 to 530 cm−3. Along with rBC, high cCO (150±30 ppb) and cO3 (56±9 ppb) mixing ratios support the biomass burning origin and pronounced photochemical aging of this layer. Upon reaching the Amazon Basin, it started to broaden and to subside, due to convective mixing and entrainment of the BB aerosol into the boundary layer. Satellite observations show that the transatlantic transport of pollution layers is a frequently occurring process, seasonally peaking in August/September. By analyzing the aircraft observations together with the long-term data from the Amazon Tall Tower Observatory (ATTO), we found that the transatlantic transport of African BB smoke layers has a strong impact on the northern and central Amazonian aerosol population during the BB-influenced season (July to December). In fact, the early BB season (July to September) in this part of the Amazon appears to be dominated by African smoke, whereas the later BB season (October to December) appears to be dominated by South American fires. This dichotomy is reflected in pronounced changes in aerosol optical properties such as the single scattering albedo (increasing from 0.85 in August to 0.90 in November) and the BC-to-CO enhancement ratio (decreasing from 11 to 6 ng m−3 ppb−1). Our results suggest that, despite the high fraction of BC particles, the African BB aerosol acts as efficient cloud condensation nuclei (CCN), with potentially important implications for aerosol–cloud interactions and the hydrological cycle in the Amazon.