Role of gut microbiota in the postnatal thermoregulation of Brandt’s voles
Tingbei Bo,
Liqiu Tang,
Xiaoming Xu,
Min Liu,
Jing Wen,
Jinzhen Lv,
Dehua Wang
Affiliations
Tingbei Bo
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China; Corresponding author
Liqiu Tang
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
Xiaoming Xu
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
Min Liu
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
Jing Wen
College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
Jinzhen Lv
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
Dehua Wang
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Shandong University, Qingdao 266237, China; Corresponding author
Summary: Homeothermy is crucial for mammals. Postnatal growth is the key period for young offspring to acquire gut microbiota. Although gut microbiota may affect mammal thermogenesis, the impact of developmental regulation of gut microbiota on the ability of young pups to produce heat remains unclear. Antibiotics were used to interfere with the establishment of gut microbiota during the development of Brandt’s voles, and their thermogenic development and regulatory pathways were determined. Deprivation of microbiota by antibiotics inhibits the development of thermogenesis in pups. Butyric acid and bile acid, as metabolites of gut microbiota, participated in the thermoregulation of pups. We propose that gut microbiota promote the development of thermoregulation through the butyric acid-free fatty acid receptor-2-uncoupling protein-1 or the deoxycholic acid-Takeda-G-protein-receptor-5-uncoupling protein-1 pathway in pups. These results show a relationship between gut microbiota and thermogenesis and expand the mechanism of postnatal development of thermogenesis in small mammals.