Heliyon (Mar 2024)
Fate-and-transport modeling of SARS-CoV-2 for rural wastewater-based epidemiology application benefit
Abstract
Wastewater-based epidemiology (WBE) for the detection of agents of concern such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been prevalent in literature since 2020. The majority of reported research focuses on large urban centers with few references to rural communities. In this research the EPA-Storm Water Management Model (EPA-SWMM) software was used to describe a small sewershed and identify the effects of temperature, temperature-affected decay rate, flow rate, flush time, fecal shedding rate, and historical infection rates during the spread of the Omicron variant of the SARS-CoV-2 virus within the sewershed. Due to the sewershed's relative isolation from the rest of the city, its wastewater quality behavior is similar to a rural sewershed. The model was used to assess city wastewater sampling campaigns to best appropriate field and or lab equipment when sampling wastewater. An important aspect of the assessment was the comparison of SARS-CoV-2 quantification methods with specifically between a traditional microbiological lab (practical quantitation limit, PQL, 1 GC/mL) versus what can be known from a field method (PQL 10 GC/mL). Understanding these monitoring choices will help rural communities make decisions on how to best implement the collection and testing for WBE agents of concern. An important outcome of this work is the knowledge that it is possible to simulate a WBE agent of concern with reasonable precision, if uncertainties are incorporated into model sensitivity. These ideas could form the basis for future mixed monitoring-modeling studies that will enhance its application and therefore adoption of WBE techniques in communities of many sizes and financial means.