Ecotoxicology and Environmental Safety (Nov 2023)

Activation of LXRα attenuates 2-Ethylhexyl diphenyl phosphate (EHDPP) induced placental dysfunction

  • Yue Zhang,
  • Jie Liang,
  • Hao Gu,
  • Ting Du,
  • Pengfei Xu,
  • Ting Yu,
  • Qing He,
  • Zhenyao Huang,
  • Saifei Lei,
  • Jing Li

Journal volume & issue
Vol. 266
p. 115605

Abstract

Read online

2-Ethylhexyl diphenyl phosphate (EHDPP) is one of the typical organophosphate flame retardants (OPFRs) and has been widely detected in environmental media. Exposure to EHDPP during pregnancy affects placental development and fetal growth. Liver X receptor α (LXRα) is essential to placental development. However, finite information is available regarding the function of LXRα in placenta damages caused by EHDPP. In present study we investigated to figure out whether LXRα is playing roles in EHDPP-induced placenta toxicity. While EHDPP restrained cell viability, migration, and angiogenesis dose-dependently in HTR-8/SVneo and JEG-3 cells, overexpression or activation by agonist T0901317 of LXRα alleviated the above phenomenon, knockdown or inhibition by antagonist GSK2033 had the opposite effects in vitro. Further study indicated EHDPP decreased LXRα expression and transcriptional activity leading to mRNA, protein expression levels downregulation of viability, migration, angiogenesis-related genes Forkhead box M1 (Foxm1), endothelial nitric oxide synthase (eNos), matrix metalloproteinase-2 (Mmp-2), matrix metalloproteinase-9 (Mmp-9), vascular endothelial growth factor-A (Vegf-a) and upregulation of inflammatory genes interleukin-6 (Il-6), interleukin-1β (Il-1β) and tumor necrosis factor-α (Tnf-α) in vitro and in vivo. Moreover, EHDPP caused decreased placental volume and fetal weight in mice, treatment with LXRα agonist T0901317 restored these adverse effects. Taken together, our study unveiled EHDPP-induced placenta toxicity and the protective role of LXRα in combating EHDPP-induced placental dysfunction. Activating LXRα could serve as a therapeutic strategy to reverse EHDPP-induced placental toxicity.

Keywords