CRISPR-TE: a web-based tool to generate single guide RNAs targeting transposable elements
Yixin Guo,
Ziwei Xue,
Meiting Gong,
Siqian Jin,
Xindi Wu,
Wanlu Liu
Affiliations
Yixin Guo
Department of Orthopedic Surgery of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University
Ziwei Xue
Department of Orthopedic Surgery of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University
Meiting Gong
Department of Orthopedic Surgery of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University
Siqian Jin
Department of Orthopedic Surgery of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University
Xindi Wu
Department of Orthopedic Surgery of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University
Wanlu Liu
Department of Orthopedic Surgery of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University
Abstract Background The CRISPR/Cas systems have emerged as powerful tools in genome engineering. Recent studies highlighting the crucial role of transposable elements (TEs) have stimulated research interest in manipulating these elements to understand their functions. However, designing single guide RNAs (sgRNAs) that are specific and efficient for TE manipulation is a significant challenge, given their sequence repetitiveness and high copy numbers. While various sgRNA design tools have been developed for gene editing, an optimized sgRNA designer for TE manipulation has yet to be established. Results We present CRISPR-TE, a web-based application featuring an accessible graphical user interface, available at https://www.crisprte.cn/ , and currently tailored to the human and mouse genomes. CRISPR-TE identifies all potential sgRNAs for TEs and provides a comprehensive solution for efficient TE targeting at both the single copy and subfamily levels. Our analysis shows that sgRNAs targeting TEs can more effectively target evolutionarily young TEs with conserved sequences at the subfamily level. Conclusions CRISPR-TE offers a versatile framework for designing sgRNAs for TE targeting. CRISPR-TE is publicly accessible at https://www.crisprte.cn/ as an online web service and the source code of CRISPR-TE is available at https://github.com/WanluLiuLab/CRISPRTE/ .