Microorganisms (Apr 2023)

Synthesis of Novel Benzenesulfonamide-Bearing Functionalized Imidazole Derivatives as Novel Candidates Targeting Multidrug-Resistant <i>Mycobacterium abscessus</i> Complex

  • Benas Balandis,
  • Povilas Kavaliauskas,
  • Birutė Grybaitė,
  • Vidmantas Petraitis,
  • Rūta Petraitienė,
  • Ethan Naing,
  • Andrew Garcia,
  • Ramunė Grigalevičiūtė,
  • Vytautas Mickevičius

DOI
https://doi.org/10.3390/microorganisms11040935
Journal volume & issue
Vol. 11, no. 4
p. 935

Abstract

Read online

Infections caused by drug-resistant (DR) Mycobacterium abscessus (M. abscessus) complex (MAC) are an important public health concern, particularly when affecting individuals with various immunodeficiencies or chronic pulmonary diseases. Rapidly growing antimicrobial resistance among MAC urges us to develop novel antimicrobial candidates for future optimization. Therefore, we have designed and synthesized benzenesulfonamide-bearing functionalized imidazole or S-alkylated derivatives and evaluated their antimicrobial activity using multidrug-resistant M. abscessus strains and compared their antimycobacterial activity using M. bovis BCG and M. tuberculosis H37Ra. Benzenesulfonamide-bearing imidazole-2-thiol compound 13, containing 4-CF3 substituent in benzene ring, showed strong antimicrobial activity against the tested mycobacterial strains and was more active than some antibiotics used as a reference. Furthermore, an imidazole-bearing 4-F substituent and S-methyl group demonstrated good antimicrobial activity against M. abscessus complex strains, as well as M. bovis BCG and M. tuberculosis H37Ra. In summary, these results demonstrated that novel benzenesulfonamide derivatives, bearing substituted imidazoles, could be further explored as potential candidates for the further hit-to-lead optimization of novel antimycobacterial compounds.

Keywords