IEEE Access (Jan 2021)

Coded-MPMC: One-to-Many Transfer Using Multipath Multicast With Sender Coding

  • Masayuki Kurata,
  • Masahiro Shibata,
  • Masato Tsuru

DOI
https://doi.org/10.1109/ACCESS.2021.3063149
Journal volume & issue
Vol. 9
pp. 49292 – 49307

Abstract

Read online

One-to-many transfers in a fast and efficient manner are essential to meet the growing need for duplicating, migrating, or sharing bulk data among servers in a datacenter and across geographically distributed datacenters. Some existing works utilize multiple multicast trees for a one-to-many transfer request to increase network link utilization and its transfer throughput. However, since those schemes do not fully utilize the max-flow value of transmission from a single sender to each recipient, there is room for each recipient to retrieve data more quickly. Therefore, assuming fully-controlled networks with full-duplex links, we pose a problem to find a set of multicast flows with an allocation of block-wise transmissions by which each of multiple recipients with diverse max-flow values from the sender can utilize its own max-flow value. Based on that, assuming a sender-side coding capability on file blocks, we design a schedule of block transmissions over multiple phases by which each recipient can achieve a lower-bound of its file retrieval completion time, i.e., the file size divided by its own max-flow value. This paper presents the coded Multipath Multicast (Coded-MPMC) for one-to-many transfers with heuristic procedures to find a desired set of multicast flows on which block transmissions are scheduled. Through extensive simulations on large-scale real-world network topologies and different types of randomly-generated synthetic topologies, the proposed method is shown to design a desired schedule efficiently. A preliminary implementation on OpenFlow is also reported to show the fundamental feasibility of Coded-MPMC.

Keywords