Investigation of Microplastics (≥10 μm) in Meconium by Fourier Transform Infrared Microspectroscopy
Zhiming Li,
Jiamin Wang,
Xia Gao,
Jiaxin Du,
Haixia Sui,
Jieling Wu,
Yizhou Zhong,
Boxuan Liang,
Yuji Huang,
Rongyi Ye,
Yanhong Deng,
Xingfen Yang,
Zhenlie Huang
Affiliations
Zhiming Li
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Jiamin Wang
Beijing Key Laboratory of Organic Materials Testing Technology & Quality Evaluation, Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
Xia Gao
Beijing Key Laboratory of Organic Materials Testing Technology & Quality Evaluation, Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
Jiaxin Du
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Haixia Sui
Division III of Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
Jieling Wu
Department of Healthcare, Guangdong Women and Children Hospital, Guangzhou 511442, China
Yizhou Zhong
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Boxuan Liang
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Yuji Huang
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Rongyi Ye
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Yanhong Deng
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Xingfen Yang
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Zhenlie Huang
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
Microplastics are prevalent emerging pollutants with widespread distribution in air, land and water. They have been detected in human stool, blood, lungs, and placentas. However, human fetal microplastic exposure remains largely under-studied. To assess fetal microplastic exposure, we investigated microplastics using 16 meconium samples. We used hydrogen peroxide (H2O2), nitric acid (HNO3) and a combination of Fenton’s reagent and HNO3 pretreatment methods respectively to digest the meconium sample. We analyzed 16 pretreated meconium samples with an ultra-depth three-dimensional microscope and Fourier transform infrared microspectroscopy. The result showed that H2O2, HNO3 and Fenton’s reagent combined with HNO3 pretreatment methods could not digest our meconium samples completely. Alternatively, we developed a novel approach with high digestion efficiency using petroleum ether and alcohol (4:1, v/v), HNO3 and H2O2. This pretreatment method had good recovery and non-destructive advantages. We found no microplastics (≥10 μm) in our meconium samples, indicating that microplastic pollution levels in the fetal living environment are miniscule. Different results between previous studies’ and ours underscore that comprehensive and strict quality control are necessary for further studies on microplastic exposure using human bio-samples.