Using linear elasticity theory, we describe the mechanical response of dry non-cohesive granular masses of Ottawa sand contained by spherical rubber balloons subject to sudden bursting in the earliest instants of the event. Due to the compression imposed by the balloon, the rupture produces a fast radial expansion of the sand front that depends on the initial radius R0, the initial pressure p originated by the balloon, and the effective modulus of compression Ke. The hydrostatic compression approximation allows for the theoretical study of this problem. We found a linear decompression wave that travels into the sand and that induces a radial expansion of the granular front in the opposite direction with similar behavior to the wave but with a slightly lower speed.