International Journal of Molecular Sciences (May 2022)

The Protein L-Isoaspartyl (D-Aspartyl) Methyltransferase Regulates Glial-to-Mesenchymal Transition and Migration Induced by TGF-β1 in Human U-87 MG Glioma Cells

  • Fatima Belkourchia,
  • Richard R. Desrosiers

Journal volume & issue
Vol. 23, no. 10
p. 5698


Read online

The enzyme PIMT methylates abnormal aspartyl residues in proteins. U-87 MG cells are commonly used to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT isoform I possessed oncogenic features when overexpressed in U-87 MG and U-251 MG glioma cells. Higher levels of wild-type PIMT stimulated migration and invasion in both glioma cell lines. Conversely, PIMT silencing reduced these migratory abilities of both cell lines. These results indicate that PIMT could play a critical role in glioblastoma growth. Here, we investigated for the first time, molecular mechanisms involving PIMT in the regulation of epithelial to mesenchymal transition (EMT) upon TGF-β1 treatments. Gene array analyses indicated that EMT genes but not PIMT gene were regulated in U-87 MG cells treated with TGF-β1. Importantly, PIMT silencing by siRNA inhibited in vitro migration in U-87 MG cells induced by TGF-β1. In contrast, overexpressed wild-type PIMT and TGF-β1 had additive effects on cell migration. When PIMT was inhibited by siRNA, this prevented Slug induction by TGF-β1, while Snail stimulation by TGF-β1 was increased. Indeed, overexpression of wild-type PIMT led to the opposite effects on Slug and Snail expression dependent on TGF-β1. These data highlighted the importance of PIMT in the EMT response dependent on TGF-β1 in U-87 MG glioma cells by an antagonist regulation in the expression of transcription factors Slug and Snail, which are critical players in EMT.