مکانیک هوافضا (Apr 2023)

Optimizing the Cooling System of an LH2/LOX Rocket Engine using the Bees Algorithm

  • Navid Bozorgan

Journal volume & issue
Vol. 19, no. 3
pp. 109 – 121

Abstract

Read online

Upgrading the thermal efficiency of the cooling system of liquid rocket engines is one of the most significant and intricate problems in designing modern rocket engines in the missile industry. The present study employed the Bees algorithm (BA) to attempt a single-objective optimization of the cooling system of the combustion chamber and nozzle of an LH2/LOX rocket engine considering the overall heat transfer coefficient objective function and four parameters, including the diameter and thickness of the cooling tubes, the radius of the throat, and the mass flow rate of liquid hydrogen (cooling fluid). The optimization was examined by the heat transfer analysis of combustion gases with the chamber walls, the use of the BA optimization algorithm, and the consideration of the sensitivity of the design parameters regarded for the overall heat transfer coefficient objective function. In this respect, these parameters were considered constant in the design ranges, while other parameters were variable. The results show that the overall heat transfer coefficient can increase almost by 17.78% during the optimization process of the cooling system of this rocket engine through the parametric analysis of the four mentioned design parameters.

Keywords