BMC Cancer (Oct 2010)

Epigenetic inactivation of the <it>NORE1 </it>gene correlates with malignant progression of colorectal tumors

  • Jang Jae,
  • Shim Jae-Jun,
  • Hwangbo Young,
  • Ryu Byung-Kyu,
  • Kang Min-Ju,
  • Ha Tae-Kyu,
  • Jeong Seong-In,
  • Lee Min-Goo,
  • Lee Jin-Hee,
  • Lee Chang,
  • Lee Kil,
  • Kim Hyo,
  • Chi Sung-Gil

DOI
https://doi.org/10.1186/1471-2407-10-577
Journal volume & issue
Vol. 10, no. 1
p. 577

Abstract

Read online

Abstract Background NORE1 (RASSF5) is a newly described member of the RASSF family with Ras effector function. NORE1 expression is frequently inactivated by aberrant promoter hypermethylation in many human cancers, suggesting that NORE1 might be a putative tumor suppressor. However, expression and mutation status of NORE1 and its implication in colorectal tumorigenesis has not been evaluated. Methods Expression, mutation, and methylation status of NORE1A and NORE1B in 10 cancer cell lines and 80 primary tumors were characterized by quantitative PCR, SSCP, and bisulfite DNA sequencing analyses. Effect of NORE1A and NORE1B expression on tumor cell growth was evaluated using cell number counting, flow cytometry, and colony formation assays. Results Expression of NORE1A and NORE1B transcript was easily detectable in all normal colonic epithelial tissues, but substantially decreased in 7 (70%) and 4 (40%) of 10 cancer cell lines and 31 (38.8%) and 25 (31.3%) of 80 primary carcinoma tissues, respectively. Moreover, 46 (57.6%) and 38 (47.5%) of 80 matched tissue sets exhibited tumor-specific reduction of NORE1A and NORE1B, respectively. Abnormal reduction of NORE1 was more commonly observed in advanced stage and high grade tumors compared to early and low grade tumors. While somatic mutations of the gene were not identified, its expression was re-activated in all low expressor cells after treatment with the demethylating agent 5-aza-dC. Bisulfite DNA sequencing analysis of 31 CpG sites within the promoter region demonstrated that abnormal reduction of NORE1A is tightly associated with promoter CpG sites hypermethylation. Moreover, transient expression and siRNA-mediated knockdown assays revealed that both NORE1A and NORE1B decrease cellular growth and colony forming ability of tumor cells and enhance tumor cell response to apoptotic stress. Conclusion Our data indicate that epigenetic inactivation of NORE1 due to aberrant promoter hypermethylation is a frequent event in colorectal tumorigenesis and might be implicated in the malignant progression of colorectal tumors.