PLoS ONE (Jan 2021)

Can spatial filtering separate voluntary and involuntary components in children with dyskinetic cerebral palsy?

  • Cassie N Borish,
  • Matteo Bertucco,
  • Denise J Berger,
  • Andrea d'Avella,
  • Terence D Sanger

DOI
https://doi.org/10.1371/journal.pone.0250001
Journal volume & issue
Vol. 16, no. 4
p. e0250001

Abstract

Read online

The design of myocontrolled devices faces particular challenges in children with dyskinetic cerebral palsy because the electromyographic signal for control contains both voluntary and involuntary components. We hypothesized that voluntary and involuntary components of movements would be uncorrelated and thus detectable as different synergistic patterns of muscle activity, and that removal of the involuntary components would improve online EMG-based control. Therefore, we performed a synergy-based decomposition of EMG-guided movements, and evaluated which components were most controllable using a Fitts' Law task. Similarly, we also tested which muscles were most controllable. We then tested whether removing the uncontrollable components or muscles improved overall function in terms of movement time, success rate, and throughput. We found that removal of less controllable components or muscles did not improve EMG control performance, and in many cases worsened performance. These results suggest that abnormal movement in dyskinetic CP is consistent with a pervasive distortion of voluntary movement rather than a superposition of separable voluntary and involuntary components of movement.