Animal Nutrition (Jun 2021)

Evaluation of energy values of high-fiber dietary ingredients with different solubility fed to growing pigs using the difference and regression methods

  • Zhengqun Liu,
  • Ruqing Zhong,
  • Kai Li,
  • Liang Chen,
  • Bifeng Zhang,
  • Lei Liu,
  • Hongfu Zhang

Journal volume & issue
Vol. 7, no. 2
pp. 569 – 575

Abstract

Read online

The objective of this study was to compare the energy values of high-fiber dietary ingredients with different solubility (sugar beet pulp [SBP] and defatted rice bran [DFRB]) in growing pigs using the difference and the regression methods. A total of 21 barrows (initial BW, 40.5 ± 1.2 kg) were assigned to 3 blocks with BW as a blocking factor, and each block was assigned to a 7 × 2 incomplete Latin square design with 7 diets and two 13-d experimental periods. The 7 experimental diets consisted of a corn-soybean meal basal diet and 6 additional diets containing 10%, 20%, or 30% SBP or DFRB in the basal diet, respectively. Each of the experimental periods lasted 12 d, with a 7 d dietary adaptation period followed by 5-d total fecal and urine collection. Results showed that the digestible energy (DE) and metabolizable energy (ME) of the SBP determined by the difference method with different inclusion levels (10%, 20%, or 30%) were 2,712 and 2,628 kcal/kg, 2,683 and 2,580 kcal/kg, and 2,643 and 2,554 kcal/kg DM basis, respectively. The DE and ME in the DFRB evaluated by the difference method with 3 different inclusion levels were 2,407 and 2,243 kcal/kg, 2,687 and 2,598 kcal/kg, and 2,630 and 2,544 kcal/kg DM basis, respectively. Different inclusion levels had no effects on the energy values of each test ingredient estimated by the difference method. The DE and ME of the SBP and the DFRB estimated by the regression method were 2,562 and 2,472 kcal/kg and 2,685 and 2,606 kcal/kg DM basis, respectively. The energy values of each ingredient determined by the regression method were similar to the values estimated by the difference method with the 20% or 30% inclusion level. However, the energy values of the SBP and DFRB estimated by the difference method with the 10% inclusion level were inconsistent with the values determined by the regression method (P < 0.05). In conclusion, the regression method was a robust indirect method to evaluate the energy values for high-fiber ingredients with different solubility in growing pigs. If the number of experimental animals was limited, the difference method with a moderate inclusion level (at least 20%) of the test high-fiber ingredient in the basal diet could be applied to substitute the regression method.

Keywords