PLoS ONE (Jan 2012)
High-intensity focused ultrasound (HIFU) for dissolution of clots in a rabbit model of embolic stroke.
Abstract
It is estimated that only 2-6% of patients receive thrombolytic therapy for acute ischemic stroke suggesting that alternative therapies are necessary. In this study, we investigate the potential for high intensity focused ultrasound (HIFU) to initiate thrombolysis in an embolic model of stroke. Iron-loaded blood clots were injected into the middle cerebral artery (MCA) of New Zealand White rabbits, through the internal carotid artery and blockages were confirmed by angiography. MRI was used to localize the iron-loaded clot and target the HIFU beam for treatment. HIFU pulses (1.5 MHz, 1 ms bursts, 1 Hz pulse repetition frequency, 20 s duration) were applied to initiate thrombolysis. Repeat angiograms and histology were used to assess reperfusion and vessel damage. Using 275 W of acoustic power, there was no evidence of reperfusion in post-treatment angiograms of 3 rabbits tested. In a separate group of animals, 415 W of acoustic power was applied and reperfusion was observed in 2 of the 4 (50%) animals treated. In the last group of animals, acoustic power was further increased to 550 W, which led to the reperfusion in 5 of 7 (∼70%) animals tested. Histological analysis confirmed that the sonicated vessels remained intact after HIFU treatment. Hemorrhage was detected outside of the sonication site, likely due to the proximity of the target vessel with the base of the rabbit skull. These results demonstrate the feasibility of using HIFU, as a stand-alone method, to cause effective thrombolysis without immediate damage to the targeted vessels. HIFU, combined with imaging modalities used to identify and assess stroke patients, could dramatically reduce the time to achieve flow restoration in patients thereby significantly increasing the number of patients which benefit from thrombolysis treatments.