Remote Sensing (Aug 2023)
Hybrid CNN-LSTM Deep Learning for Track-Wise GNSS-R Ocean Wind Speed Retrieval
Abstract
The NASA Cyclone GNSS (CYGNSS) mission provides one Delay Doppler Map (DDM) per second along observational tracks. To account for spatiotemporal correlations within adjacent DDMs in a track, a deep hybrid CNN-LSTM model is proposed for wind speed prediction. The model combines convolutional and pooling layers to extract features from DDMs in one track, which are then processed by LSTM as a sequence of data. This method leads to a test RMSE of 1.84 m/s. The track-wise processing approach outperforms the architectures that process the DMMs individually, namely based on Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), and a network based solely on fully connected (FC) layers, as well as the official retrieval algorithm of the CYGNSS mission with RMSEs of 1.92 m/s, 1.92 m/s, 1.93 m/s, and 1.90 m/s respectively. Expanding on the CNN-LSTM model, the CNN-LSTM+ model is proposed with additional FC layers parallel with convolutional and pooling layers to process ancillary data. It achieves a notable reduction in test RMSE to 1.49 m/s, demonstrating successful implementation. This highlights the significant potential of track-wise processing of GNSS-R data, capturing spatiotemporal correlations between DDMs along a track. The hybrid deep learning model processing the data sequentially in one track learns these dependencies effectively, improving the accuracy of wind speed predictions.
Keywords