Applied Sciences (Apr 2024)
Data-Driven Identification of Crane Dynamics Using Regularized Genetic Programming
Abstract
The meaningful problem of improving crane safety, reliability, and efficiency is extensively studied in the literature and targeted via various model-based control approaches. In recent years, crane data-driven modeling has attracted much attention compared to physics-based models, particularly due to its potential in real-time crane control applications, specifically in model predictive control. This paper proposes grammar-guided genetic programming with sparse regression (G3P-SR) to identify the nonlinear dynamics of an underactuated crane system. G3P-SR uses grammars to bias the search space and produces a fixed number of candidate model terms, while a local search method based on an l0-regularized regression results in a sparse solution, thereby also reducing model complexity as well as reducing the probability of overfitting. Identification is performed on experimental data obtained from a laboratory-scale overhead crane. The proposed method is compared with multi-gene genetic programming (MGGP), NARX neural network, and Takagi-Sugeno fuzzy (TSF) ARX models in terms of model complexity, prediction accuracy, and sensitivity. The G3P-SR algorithm evolved a model with a maximum mean square error (MSE) of crane velocity and sway prediction of 1.1860 × 10−4 and 4.8531 × 10−4, respectively, in simulations for different testing data sets, showing better accuracy than the TSF ARX and MGGP models. Only the NARX neural network model with velocity and sway maximum MSEs of 1.4595 × 10−4 and 4.8571 × 10−4 achieves a similar accuracy or an even better one in some testing scenarios, but at the cost of increasing the total number of parameters to be estimated by over 300% and the number of output lags compared to the G3P-SR model. Moreover, the G3P-SR model is proven to be notably less sensitive, exhibiting the least deviation from the nominal trajectory for deviations in the payload mass by approximately a factor of 10.
Keywords