Data in Brief (Jun 2023)

Kurdish News Dataset Headlines (KNDH) through multiclass classification

  • Soran Badawi,
  • Ari M. Saeed,
  • Sara A. Ahmed,
  • Peshraw Ahmed Abdalla,
  • Diyari A. Hassan

Journal volume & issue
Vol. 48
p. 109120

Abstract

Read online

The rapid growth of technology has massively increased the amount of text data. The data can be mined and utilized for numerous natural language processing (NLP) tasks, particularly text classification. The core part of text classification is collecting the data for predicting a good model. This paper collects Kurdish News Dataset Headlines (KNDH) for text classification. The dataset consists of 50000 news headlines which are equally distributed among five classes, with 10000 headlines for each class (Social, Sport, Health, Economic, and Technology). The percentage ratio of getting the channels of headlines is distinct, while the numbers of samples are equal for each category. There are 34 distinct channels that are used to collect the different headlines for each class, such as 8 channels for economics, 14 channels for health, 18 channels for science, 15 channels for social, and 5 channels for sport. The dataset is preprocessed using the Kurdish Language Processing Toolkit (KLPT) for tokenizing, spell-checking, stemming, and preprocessing.

Keywords