Journal of Lipid Research (Mar 2015)
12/15-Lipoxygenase metabolites of arachidonic acid activate PPARγ: a possible neuroprotective effect in ischemic brain
Abstract
The enzyme 12/15-lipoxygenase (LOX) oxidizes various free fatty acids, including arachidonic acid (AA). In the brain, the principal 12/15-LOX metabolites of AA are 12(S)-HETE and 15(S)-HETE. PPARγ is a nuclear receptor whose activation is neuroprotective through its anti-inflammatory properties. In this study, we investigate the involvement of 12(S)- and 15(S)-HETE in the regulation of PPARγ following cerebral ischemia and their effects on ischemia-induced inflammatory response. We show here the increased expression of 12/15-LOX, predominantly in neurons, and elevated production of 12(S)-HETE and 15(S)-HETE in ischemic brain. The exogenous 12(S)- and 15(S)-HETE increase PPARγ protein level, nuclear translocation, and DNA-binding activity in ischemic rats, suggesting the activation of PPARγ. This effect was further confirmed by showing the increased PPARγ transcriptional activity in primary cortical neurons when incubated with 12(S)- or 15(S)-HETE. Moreover, both 12(S)- and 15(S)-HETE potently inhibited the induction of nuclear factor-κB, inducible NO synthase, and cyclooxygenase-2 in ischemic rats, and elicited neuroprotection. The reversal of the effects of 12(S)- and 15(S)-HETE on pro-inflammatory factors by PPARγ antagonist GW9662 indicated their actions were mediated via PPARγ. Thus, the induction of 12(S)- and 15(S)-HETE during brain ischemia suggests that endogenous signals of neuroprotection may be generated.