Agriculture (Jul 2022)
Genotype by Environment Interaction Analysis for Grain Yield of Wheat (<i>Triticum aestivum</i> (L.) em.Thell) Genotypes
Abstract
Genotype environment interaction and stability performance were investigated on grain yield per plot in eight environments during Rabi (here, rabi means that a crop has been grown in Rabi season: crops that are sown in winter and harvested in spring in the Indian subcontinent) 2019–2020 and 2020–2021 using 100 diverse wheat genotypes. Research was conducted at Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana in India. The analysis of variance revealed that genotype, environment and their interaction had a highly significant effect on the yield as reflected in Eberhart and Russel model and The Eberhart and Russell model indicated the suitability of the genotypes WH 1142, PBW 661, PBW 475 and DBW 17 with high mean, bi > 1 and non-significant deviation from regression to favorable environment, whereas the genotypes UP 2660 and DBW 88 with high mean, bi < 1 and non-significant deviation from regression were found suitable for poor environment. The Additive Main Effects and Multipicative Interaction (AMMI) analysis of variance for grain yield per plot across the environments showed that 26.41% of the total variation was attributed to genotypic effects, 70.22% to environmental effects and 3.37% to genotype × environment interaction effects. AMMI biplot study indicated the genotypes PBW 750, DPW 621-50, WH 542, PBW 486, PBW 661 and WH 1192 stable across the environments as they did not exert strong interactive forces; hence, they were selected as potential candidates for possible release in the study areas. Furthermore, the which-won–where model indicated the adaptation of genotypes PBW 706, PBW 769, DBW 116, WH 1157, WH 789 and WH1186 to first mega-environment and genotypes DBW 16, WH 1152, WH 1105 and PBW 503 in the second. These genotypes could be utilized in breeding programs to improve grain yield in bread wheat and may be used as stable breeding material for commercial cultivation.
Keywords