Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Yaqi Zhang
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Lei Wang
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Haoyuan Geng
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Min Li
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Shiping Chen
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Xiao Wang
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Panpan Chen
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Chenglong Sun
Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Chao Zhang
Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
Curcumin is widely recognized for its diverse antitumor properties, ranging from breast cancer to many other types of cancers. However, its role in the tumor microenvironment remains to be elucidated. In this study, we established a 3D tumor spheroids model that can simulate the growth environment of tumor cells and visualized the antitumor metabolic alteration caused by curcumin using mass spectrometry imaging technology. Our results showed that curcumin not only exerts a profound impact on the growth and proliferation of breast cancer cells but in situ multivariate statistical analysis also reveals the significant effect on the overall metabolic profile of tumor spheroids. Meanwhile, our visualization map characterized curcumin metabolic processes of reduction and glucuronidation in tumor spheroids. More importantly, abnormal metabolic pathways related to lipid metabolism and polyamine metabolism were also remodeled at the metabolite and gene levels after curcumin intervention. These insights deepen our comprehension of the regulatory mechanism of curcumin on the tumor metabolic network, furnishing powerful references for antitumor treatment.